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Growers Summary 

Background 

The spotted wing drosophila (Drosophila suzukii) is an invasive pest of soft and stone fruit crops and, 

if left uncontrolled, can result in complete crop loss. Evidence from other countries has shown that 

early detection and rapid response is crucial to minimising the impact of SWD on soft and stone fruit 

crops. A successful programme of population monitoring (SF/TF 145a) has confirmed the presence of 

the pest in Great Britain, and consequently, development of a decision support tool for timely 

applications of plant protection products is now identified as a top priority for the soft fruit industry. 

Main objectives 

The main objectives of this project were to develop and test: (i) site-specific population models of 

abundance (all years of data for each location combined); (ii) a site-nonspecific population model of 

abundance (all locations and years of data combined); (iii) a range of machine learning (ML) 

algorithms for predicting both site-specific and site-nonspecific abundance. The aim is for final 

model to be hosted on a dedicated AHDB webpage as a decision support tool for predicting when 

key levels of population abundance are reached. 

Research undertaken 

SWD abundance data from 16 locations spanning 2014-2020 were integrated with UK Met. Office 

temperature data and modelled using three different approaches: population modelling (curve-

fitting), statistical modelling, and ML. Model fitting was conducted over a range of geographic 

groupings to determine the most informative / pragmatic spatial scale for development and 

deployment of a decision support tool: site-, region-, country- and national-scale. 

Key findings 

• A national-scale ML algorithm was developed for forecasting risk of SWD activity in spring from 

weather data. It achieved an overall predictive accuracy of 80% and provides support for 

decisions on the need to start crop protection measures at the beginning of the season (March 

1). 

• Regression models were derived for predicting key levels of population abundance that 

precipitate crop protection measures. The day-of-season on which 5% of population abundance 

was reached was well predicted at the national-scale with an average error of 3.15 days, 

increasing to 5.96 days for the day-of-season on which 50% of population abundance was 

reached. 

• The SWD data showed large variation between capture sites and years for the timing of the 

exponential phase of SWD activity (i.e., 0-5% of SWD captures). It was therefore not possible to 

develop robust predictive tools to forecast this important phase of activity. 

• Percentile capture charts were plotted over a range of spatial scales to serve as decision support 

tools. They show observed values (and uncertainty) for accumulated degree-days that mark key 
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levels of population abundance and can be used to identify the optimum moments to apply 

control measures to coincide with these dates. 

• Population models were fit to the data to provide growers with tools that can be used to evaluate 

management decisions across the whole growing season. Model fits were excellent, with average 

R2 values of 0.95, 0.91, 0.92 and 0.87 at the site-, region-, country-, and national-scales.  

Science Section 

Methodology  

Datasets 

SWD capture data (male + female) from crops in 2013-2020 were available from a total of 16 sites in 

Scotland and England. Data from all sites for 2013 were excluded from analysis as there were no 

observations in the first 8 months of the year. Data from 2021 were excluded as there were no 

corresponding weather data to construct predictor variables. This left a total of 88 datasets for 

analysis.  

The coordinates of capture locations were used to match each site to its nearest weather datapoint 

in the UK Met. Office Best Data database (a total of 3600 locations across the UK, providing hourly 

weather variables spanning 2012-2020). 

Classification of spring risk  

This modelling task aimed to provide growers with a tool that can forecast if SWD activity is 

expected in spring (March-April-May, MAM), and thus if there is a need to start applying crop 

protection measures from the beginning of the growing season (March 1). Total MAM captures were 

calculated for each dataset and discretized to binary risk variables, where 0 = no SWD captured (no 

risk, no action required) and 1 = SWD captured (SWD risk, action required). Hourly UKMO weather 

data for January and February were used to provide the following predictor variables: minimum 

temperature, maximum temperature, temperature sum, hours of relative humidity ≥ 90%, average 

wind speed, average wind gust, total cloudiness, total sunshine, and total precipitation. The latitude 

and longitude of each site provided two further predictor variables. A Decision Tree algorithm was 

built to predict risk of MAM activity from the predictor variables, using the MATLAB procedure 

fitctree implemented within a nested k-fold cross-validation procedure with Bayesian 

optimization for model tuning and selection. The hyperparameter MaxNumSplits was set to 10 to 

avoid deep (complex) trees.   

Predicting key percentiles of SWD activity 

The second modelling task investigated if the timing of key percentiles of SWD captures could be 

predicted using accumulated degree-days. Percentiles are values that divide a set of observations 

into 100 equal parts, e.g., the 5-percentile point is the value below which 5% of data falls. Datasets 

with very few / low captures were removed from this analysis as there were not enough datapoints 

to provide robust results for this task. Any site with less than a total of 50 drosophila captured in a 

year was excluded. Data for site 10a for 2014 and 2015 were also removed as there were no 

recorded observations for the second halves of those years. Data for site 1300 in 2020 could not be 
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used as there were no weather data for the 2021 component of the season. After data cleaning, 

there were a total of 59 unique site-year datasets for the calculation of percentile capture points.  

The day of the season of the 5- and 50-percentile of captures was calculated by interpolation using 

Piecewise Cubic Hermite Interpolating Polynomials. Hourly screen temperature values were used to 

calculate accumulated degree-days for each day of capture in the data. To do so it was necessary to 

define a ‘starting point’ for the season, i.e., a biofix date that signals the start of degree-day 

accumulations. This was problematic as numerous datasets contained low levels of sporadic 

captures throughout the year. Each dataset was analysed visually and mathematically to determine 

local minima in trap captures that signalled the start and end of peak activity periods. A rule was 

developed whereby the first observed capture after April 1 that was ≥ 1% of the maximum capture 

value was defined as the start of seasonal SWD activity. This ensured that the start of activity 

coincided with increase in abundance and was not influenced by occasional sporadic captures 

between cropping seasons. The median first day of capture for all site-year combinations was day 

195, which reflected the seasonality in trap catches (peak abundance in Autumn-Winter and decline 

over Spring). The median first day of capture was used to create a vector of potential biofix dates for 

examination in the modelling analyses: 18/06, 02/07, 16/07, 30/07, 13/08, and a season was defined 

as spanning a 365-day period (366 for seasons that spanned a leap year) from the biofix date.  

Degree-days were calculated using the continuous integration method on hourly temperature 

values. This is considered more accurate than the standard approximation methods as it accounts 

for temperature variations within each day. Degree-days require a baseline temperature below 

which it is assumed no development occurs. These vary widely for SWD in the literature therefore a 

heuristic approach was adopted matching that of the biofix date, where a range of potential baseline 

temperatures (11 values ranging from 0 to 10 degrees) was used to create 11 different degree-day 

predictor variables for testing. Note that by convention, any temperature below the baseline was set 

equal to the baseline, but no upper temperature threshold (for development) was set. Model fitting 

/ training proceeded by iterating over each biofix-baseline temperature combination to find the 

optimum setting for peak predictive performance. 

Degree-days accumulated above the vector of 11 baseline values starting from the five biofix dates 

to the day-of-season of 5- and 50-percentile captures were calculated. Note that ‘day-of-season’ 

(starting at the biofix date) and not ‘day-of-year’ is used, as the period of peak SWD activity 

sometimes spanned consecutive years. Day-of-season of percentile points were then regressed on 

accumulated degree-days. To estimate the generalization power of the optimal model, i.e., the 

ability to predict on new, unseen data, a hold-out cross-validation procedure was used. Data for 

2018 (approximately 20% of the full dataset) were kept aside for model testing, with the remainder 

used for fitting. The optimal settings (biofix-baseline combination) to predict the percentile captures 

of the training data were determined by calculating the mean absolute error (MAE) between all 

predicted and observed days-of-season for percentile captures and choosing the values that gave 

the smallest MAE. Results for the ‘optimal model’ on the hold-out test set are provided. The optimal 

model was then refit using all the data and goodness of fit results for each group member are 

provided. Note that the region- and national-scales were used in this analysis. 

A total of 24 machine learning algorithms were also used to predict percentile capture points from 

accumulated degree days to investigate if improvements in predictive performance over simple 

regression could be attained. A hold-out cross-validation procedure (75% train,25% test, partitioned 

at random) was performed to test the generalization ability of the algorithms. 
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‘Percentile capture charts’ were plotted to serve as decision support tools. Mean values for 

accumulated degree-days (using the optimal biofix-baseline settings) up to the day-of-season of the 

5- and 50-percentile captures were used to create line graphs that identify the optimum moments to 

apply control measures to coincide with these dates. 

Modelling population dynamics over the whole season 

The third modelling task aims to provide growers with a model of population dynamics that can be 

used to evaluate management decisions across the whole growing season. Trap captures from the 

59 site-year combinations with sufficient data (described above) were accumulated at each site 

(from each biofix date) and computationally normalized (division by total capture) to produce 

proportional captures ranging from 0 to 1. Proportional captures were analysed relative to 

accumulated degree days using six classic models from population ecology: the monomolecular, 

logistic, log-logistic, Weibull, Gompertz and Richards equations. This made a total of 330 fits for each 

dataset (5 biofix-11 degree-day baselines-6 models). In addition, the models were fit using four 

scales of analysis, where observations were grouped by site (16), region (East Scotland, Yorkshire & 

Humber, West Midlands, East Midlands, East of England, and South East England), country (Scotland, 

England), and nation (not grouped). This made a total of 5280, 1980, 660, and 330 model fits, 

respectively. The optimal biofix-baseline-model combination to predict proportional captures at 

each scale of analysis (best overall for site-, region-, country- and national-scales) was assessed using 

the coefficient of determination. Separate fit results for the optimal combination are provided for 

each group within each scale. 

A total of 24 machine learning algorithms were also used to predict the proportional capture data to 

investigate if improvements in predictive performance over population models could be attained. A 

hold-out cross-validation procedure (75% train,25% test, partitioned at random) was performed to 

test the generalization ability of the algorithms. 

Results 

Classification of spring risk 

Approximately 40% of all datasets had a total spring (MAM) capture of 0, providing a balanced 

dataset for learning. The Decision Tree ML algorithm was able to predict whether SWD would be 

captured in spring (spring risk) with an overall predictive accuracy of 80% on the hold-out test folds 

of the nested k-fold procedure (Fig. 1). The optimal hyperparameters determined by the Bayesian 

optimization method were MinLeafSize = 4, SplitCriterion = deviance, and 

NumVariablesToSample = 4. The variables longitude, average temperature, minimum temperature, 

and average wind speed were used in the final model, and their relative importance as predictors of 

spring SWD risk is given in Fig. 2. Fig. 3 provides a graphic description of the final model. 
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Fig. 1. Confusion matrix of spring SWD risk, where output class = predicted class, target class = true class, 0 = no 

captures in spring, and 1 = captures in spring. The grey column on the far right shows the positive predictive 

value in green and false discovery rate in red. The grey bottom row shows the true positive rate in green and 

the false negative rate in red. The cell in the bottom right shows the overall predictive accuracy. 

 

Fig. 2. Predictor importance scores for the Decision Tree model, where lon = longitude, avT = average 

temperature, mint = minimum temperature, and avU = average wind speed.  
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Fig. 3. Graphic description of the Decision Tree model, where 0 = no captures in spring, 1 = captures in spring, 

lon = longitude, avT = average temperature, mint = minimum temperature, and avU = average wind speed.  

Predicting key percentiles of SWD activity 

It was not possible to provide predictions for day-of-season of the 1-percentile of captures as the 

data for early captures were too variable among sites and between years. This was established 

previously using generalized linear mixed effects models in a modelling report for AHDB project 

SF/TF 145a. It is illustrated here using a plot of proportional SWD captures for the exponential phase 

of activity (0-5% of total captures) of each dataset (Fig. 4) 

 

Fig. 4. Observed cumulative normalized SWD captures (blue markers) for the exponential phase of activity in 

individual site x year datasets. The red lines are fitted exponential curves. 
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The MAE of the model on the test set (2018) was 1.8 days for day-of-season of the 5-percentile of 

captures, and 2.6 days for day-of-season of the 50-percentile of captures when data was grouped at 

a regional-scale. The optimal biofix-baseline settings were 18/07 and 0 degrees. Similar predictive 

accuracy was achieved when the model was refit to all years at the region-scale using optimal biofix-

baseline settings (Fig. 5; Table S1). 

 
Fig. 5. Observed and predicted day of season of 5- and 50-percentile captures: (a) East Scotland, (b) Yorkshire & 

Humber, (c) West Midlands, (d) East Midlands, (e) East of England, (f) South East England. Diagonal lines are 

1:1 lines. 

The MAE of the model on the test set (2018) at the national-scale was 3.15 days for day-of-season of 

the 5-percentile of captures, and 5.96 days for day-of-season of the 50-percentile of captures. 

Similar predictive accuracy was achieved when the model was refit to all years at the national-scale 

using optimal biofix-baseline settings (Fig. 6, Table S2). 

 

Fig. 6. Observed and predicted day of season of 5- and 50-percentile capture for GB. Diagonal line is a 1:1 line. 
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Machine learning 

Support Vector Machine achieved the highest accuracy (rmse = 4.8) on the hold-out test data for 

prediction of day-of-season of percentile captures using degree-days as a predictor (Fig. 7).  

 

 

 

Fig. 7. Accuracy of the suite of 24 machine learning algorithms for predicting day-of-season of percentile 

captures using degree-days as a predictor.  

 

When region ID (a code from 1 to 6) was added as a categorical predictor, Gaussian Process 

Regression was the superior algorithm and predictive performance increased to rmse = 3.25 (Fig. 8). 

Note that the linear regression described previously to test the validity of percentile capture charts 

achieved an overall rmse of 2.78 for prediction of day-of-season of percentile captures using data 

grouped by region. 
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Fig. 8. Accuracy of the suite of 24 machine learning algorithms for predicting day-of-season of percentile 

captures using degree-days and region ID as predictors. 

 

The difference in rmse between the linear regression model here (Fig. 8) and that described in the 

previous section is likely due to the different hold-out cross-validation procedures; here the test set 

was a random selection of 25% of the data, whereas previously all data for 2018 was used as a test 

set.  

Percentile capture charts 

There was a marked difference in the 5- and 50-percentile thresholds among the six regions, 

providing evidence of the need for a separate chart for each geographic region (Fig. 9). Note that the 

thresholds on the charts are generated from observations of accumulated degree-days at percentile 

capture points and not from model predictions; the purpose of the modelling was to establish if 

accumulated degree-days are a good predictor of the day-of-season of key capture percentiles. Also 

note that the thresholds are mean values for all sites and years within each region, and there was 

considerable variation in those values within regions. 

An alternative approach is to also display a measure of uncertainty around the mean (within-region) 

percentile capture points, or to use a more robust estimator of central tendency that reduces the 

effects of outlier bias. Yorkshire & Humber had insufficient data to calculate a meaningful 

confidence interval or measure of variation, therefore one-sided trimmed means were used. A 

trimmed mean is a measure of central tendency that is less sensitive to outliers than the mean. It 

involves calculation of the mean after discarding values at the higher and lower end of a sample. 

When only values at one extreme are removed it is called a one-sided trimmed mean. The ‘upper 

mean’ is the average of a sample when low values are discarded (upper mean > mean) and the 
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‘lower mean’ is the average when high values are discarded (lower mean < mean). Lower means 

were calculated by discarding values > 75-percentile of the sample and upper means by discarding 

values < 25-percentile of the sample. The lower mean can be used to mark the action point for a risk 

averse strategy and the upper mean a risk tolerant strategy (Fig. 10). 

 

 

Fig. 9. Spotted wing drosophila percentile capture charts: (a) East Scotland, (b) Yorkshire & Humber, (c) West 

Midlands, (d) East Midlands, (e) East of England, (f) South East England. The orange zone marks 0 to 5-

percentile of captures and the red zone the 5- to 50-percentile. The curves show accumulated degree days for 

the datasets used to generate the thresholds in each region. 
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Fig. 10. Spotted wing drosophila percentile capture charts with risk tolerance bands: (a) East Scotland, (b) 

Yorkshire & Humber, (c) West Midlands, (d) East Midlands, (e) East of England, (f) South East England. 

Horizontal lines show the mean accumulated degree days for the 5- and 50-percentile capture points in each 

region. The coloured bands delineate lower (risk averse) and upper (risk tolerant) trimmed mean values. Curves 

show accumulated degree days for the datasets used to generate the thresholds in each region. 

 

If confidence intervals are preferred, Yorkshire & Humber must be removed (Fig. 11). Alternatively, it 

could be merged with another region. 



12 
© Agriculture and Horticulture Development Board 2022. All rights reserved 

 

Fig. 11. Spotted wing drosophila percentile capture charts with risk tolerance bands: (a) East Scotland, (b) 

Yorkshire & Humber, (c) West Midlands, (d) East Midlands, (e) East of England, (f) South East England. 

Horizontal lines show the mean accumulated degree days for the 5- and 50-percentile capture points in each 

region. The coloured bands represent the 95% confidence interval of the mean. Curves show accumulated 

degree days for the datasets used to generate the thresholds in each region. 

 

To plot a capture chart for GB the median accumulated degree days for the 5- and 50-percentile 

capture points is used, as the data for the 5-percentile points were skewed. The interquartile range 

is therefore used as a measure of uncertainty around median values, as opposed to a confidence 

interval or a trimmed mean, to give ‘risk averse vs risk tolerant’ action points (Fig. 12). 
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Fig. 12. Spotted wing drosophila percentile capture chart with risk tolerance bands fr GB. Horizontal lines show 

the median accumulated degree days for the 5- and 50-percentile capture points across all trap locations. The 

coloured bands represent the interquartile range. Curves show accumulated degree days for all  datasets used 

to generate the thresholds. 

It can be seen in Figs. 9-12 that large differences in SWD trap captures between sites and years 

resulted in variation in the timing of percentile capture points, leading to uncertainty in the dates of 

action points.  

Modelling population dynamics over the whole season 

The fit results for the site-, region-, country- and national-scales of analysis are given in Figs. 13-16 

and Tables S3-6 (Appendix), respectively. The logistic model was the best overall for grouping by site, 

region, and country, whereas the Richards model was superior at the national-scale. The optimal 

biofix-baseline settings were 18/06 and 0 degrees for all geographic groupings.  

Machine learning 

Gaussian Process Regression achieved the highest accuracy (rmse = 0.14) on the hold-out test data 

for prediction of proportional captures using degree-days as a predictor (Fig. 17). Note that the 

Logistic model fit to all the (ungrouped) proportional capture data also achieved an overall rmse of 

0.14. 

When site ID (a code from 1 to 16) was added as a categorical predictor, predictive performance on 

the test set increased to rmse = 0.1 (Fig. 18). The logistic population model fit to all the proportional 

captured data grouped by site achieved an overall rmse of 0.09. 
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Fig. 13. Observed and predicted proportional Spotted wing drosophila captures grouped by site, where (a) to (j) 

are sites 1 to 10, and panels (k) to (o) are sites 10a, 10b, 1100, 1300, and 1400.  
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Fig. 14. Observed and predicted proportional Spotted wing drosophila captures grouped by region: (a) East 

Scotland, (b) Yorkshire & Humber, (c) West Midlands, (d) East Midlands, (e) East of England, (f) South East 

England. 

 

 

Fig. 15. Observed and predicted proportional Spotted wing drosophila captures grouped by country: (a) 

Scotland, (b) England. 
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Fig. 16. Ungrouped observed and predicted proportional Spotted wing drosophila captures 

 

 

 

 

Fig. 17. Accuracy of the suite of 24 machine learning algorithms for predicting proportional captures using 

degree-days as a predictor.  
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Fig. 18. Accuracy of the suite of 24 machine learning algorithms for predicting proportional captures using 

degree-days and site ID as predictors.  

 

Discussion 

All modelling approaches were successful with good predictive performance. The classifier for spring 

risk can be used to provide a prediction on March 1 regarding the need to begin crop protection 

measures. The ‘percentile capture charts’ can be used in the same way as the Blackcurrant Gall Mite 

Emergence charts, where the degree-day curve of the current season is plotted on the chart. The 

percentile capture charts, however, have the added advantage of separate region-specific thresholds 

and, if desired, zones defining risk averse and risk tolerant strategies. The population models and 

machine learning algorithms, which performed equally well, can also be used to provide predictions 

of when certain thresholds of activity are reached. Note that a host of additional statistical models 

and machine learning algorithms for various aspects of the SWD life cycle are available from AHDB 

project SF/TF 145a, as detailed in the project reports. These include an Adaptively Boosted Decision 

Tree algorithm (adaboostm1) that can predict SWD flight activity on any given day with 91.8% 

accuracy using a range of weather variables, and a Fine K-Nearest Neighbor algorithm that can 

predict the first spring peaks of female activity with 93.3% accuracy. 
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Supplement 

 

Table S1. Estimated coefficients (95% CI) and goodness of fit for day-of-season of percentile capture 

points regressed on accumulated degree-days, grouped by region.  

Region Parameter a Parameter b MAE rmse R2 

1 0.0886  0.0034 -7.724  2.757 1.46 1.91 0.99 

2 0.0931  0.0194 -8.377  13.41 5.92 7.63 0.98 

3 0.0747  0.0046 -3.156  3.267 2.72 3.76 0.98 

4 0.0711  0.0044 -2.832  3.659 1.77 2.23 0.99 

5 0.0653  0.0054 -1.166  3.153 1.59 2.47 0.99 

6 0.0751  0.0030 -4.475  2.755 3.96 5.42 0.98 

Region 1 = E Scotland, 2 = Yorkshire & Humber, 3 = W Midlands, 4 = E Midlands, 5 = E England, 6 = SE England 

 

Table S2. Estimated coefficients (95% CI) and goodness of fit for day-of-season of percentile capture 

points regressed on accumulated degree-days, with data pooled for the UK.  

 Parameter a Parameter b MAE rmse R2 

 0.0763  0.0024 -3.880  1.972 4.13 5.72 0.97 

Region 1 = E Scotland, 2 = Yorkshire & Humber, 3 = W Midlands, 4 = E Midlands, 5 = E England, 6 = SE England 

 

Table S3. Estimated coefficients (95% CI) and goodness of fit for the logistic model fit to Spotted 

wing drosophila capture data grouped by site.  

Site Parameter a Parameter b rmse R2 

1 0.0073  0.0013 1833  29 0.11 0.94 

2 0.0039  0.0004 1233  28 0.06 0.97 

3 0.0094  0.0009 2097  12 0.07 0.97 

4 0.0033  0.0004 1459  42 0.13 0.89 

5 0.0035  0.0003 1565  27 0.08 0.95 

6 0.0036  0.0003 1525  26 0.07 0.97 

7 0.0040  0.0003 1637  23 0.08 0.96 

8 0.0037  0.0002 1357  19 0.06 0.98 

9 0.0039  0.0004 1342  31 0.10 0.93 

10 0.0045  0.0003 1601  20 0.07 0.97 

11 0.0088  0.0005 1350  8 0.01 1.00 

12 0.0028  0.0006 1241  92 0.19 0.74 

13 0.0116  0.0015 1349  13 0.03 0.99 

15 0.0093  0.0007 1508  11 0.06 0.98 

16 0.0059  0.0007 1380  24 0.09 0.95 
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Table S4. Estimated coefficients (95% CI) and goodness of fit for the logistic model fit to Spotted 

wing drosophila capture data grouped by region.  

Region Parameter a Parameter b rmse R2 

1 0.0072  0.0005 1439  12 0.09 0.96 

2 0.0028  0.0006 1241  92 0.19 0.74 

3 0.0041  0.0003 1459  21 0.10 0.93 

4 0.0040  0.0003 1637  23 0.08 0.96 

5 0.0037  0.0002 1357  19 0.06 0.98 

6 0.0035  0.0002 1645  21 0.15 0.86 

Region 1 = E Scotland, 2 = Yorkshire & Humber, 3 = W Midlands, 4 = E Midlands, 5 = E England, 6 = SE England 

 

Table S5. Estimated coefficients (95% CI) and goodness of fit for the logistic model fit to Spotted 

wing drosophila capture data grouped by country.  

Country Parameter a Parameter b rmse R2 

Scotland 0.0072  0.0005 1439  13 0.09 0.96 

England 0.0034  0.0001 1538  15 0.14 0.87 

 

Table S6. Estimated coefficients (95% CI) and goodness of fit for the Richards model fit to Spotted 

wing drosophila capture data grouped by nation.  

Nation Parameter a Parameter b Parameter c rmse R2 

GB 1.033  0.012 0.0025  0.0001 28.79  5.58 0.14 0.87 

 

 


